
 
 
 

 
 

 
 
 

 
 

 
 

sendQuick Appliance API Guide 
Version 3.1 

 
 
 

 
 
 
 
 
 
 

 

TalariaX Pte Ltd 

76 Playfair Road  

#08-01 LHK2 Building 

Singapore 367996 

Tel : +65 6280 2881    Fax : +65 6280 6882 

Email : info@talariax.com 

www.TalariaX.com 



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 2    

 

REVISION SHEET 
 

Release 
No. 

Date Description 

3.1 
 

27/07/2020 Re-released version with updated URL and emphasis 
on Appliance API only. 

   

   

   

   

 

 

 
  



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 3    

 

Table of Contents 

1.0 Introduction 5 

1.1 About TalariaX Pte Ltd 5 

1.2 About sendQuick 5 

1.3 Purpose of Document 5 

2.0 sendQuick Solutions 6 

2.1  Business Uses of SMSes 6 

2.2  AppServer and sendQuick Messaging Flow 6 

3.0 HTTP Post Method 7 

3.1 Overall Transaction Flow 7 

3.2 Sending SMSes 8 

3.2.1 sendQuick Response to sendsms.cgi 10 

3.2.2 Check Status of Outgoing SMSes 10 

3.2.3 Getting the Status of SMSes Sent 11 

3.2.4  Delete Outgoing SMSes via HTTP 12 

3.3 Receiving SMSes 13 

4.0 XML Method 14 

4.1 Sending Messages 14 

4.2 Responses to sendsms_xml.php 14 

4.3 Receiving SMSes 15 

5.0 SOAP Method 16 

5.1 Sending SMSes 16 

5.2 sendQuick Responses to sendsms_soap.php 17 

5.3 Receiving SMSes 18 

6.0 JSON Method 19 

6.1 Sending SMSes 19 

6.2 sendQuick Response to sendsms_json.php 19 

6.3 Receiving SMSes 20 

7.0 SMTP (Email) Method 21 

7.1 Sending SMS 21 

7.2 Receiving SMS 21 

8.0 FTP Method 22 

8.1 Activation 22 

8.2 Folder, File & Format 23 



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 4    

8.2.1 Folder 23 

8.2.2 File Structure 23 

8.2.3 File Format 23 

8.2.4 File Type 23 

8.2.5 Upload the Files 24 

9.0 Useful Topics 25 

9.1 Examples of Applications 25 

9.1.1 Sending of SMSes 25 

9.1.2 Global Script for Receiving SMS 26 

9.1.3 Route by Specific SMS Keyword 27 

9.1.4 Script to Generate SMS Response to Sender 28 

9.2 Advance Topic for trackid and status_url 30 

9.3 Using Parameter 'label' 32 

9.4 Useful Free Utilities 33 

9.4.1 curl 33 

9.4.2 Java Command Tool 33 

 
 
 
 
 

  



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 5    

sendQuick Appliance API Guide 
 

1.0 Introduction 

1.1 About TalariaX Pte Ltd 

TalariaX™ develops and offers enterprise mobile messaging solutions to facilitate and 
improve business workflow and communication, and is widely used in areas such as IT 
alerts & notifications, secure remote access via 2-Factor Authentication, emergency & 
broadcast messaging, business process automation and system availability monitoring.   
 
In addition to functionality, TalariaX’s messaging solutions have also been developed with 
other key features in mind. These include security and confidentiality of company 
information, and ease in mitigating disruption during unplanned system downtime such 
as that arising from cyberattacks. 
 

1.2 About sendQuick 

sendQuick is a comprehensive Short Messaging Service (SMS) gateway that is available 
in the form of an appliance or as a cloud-based solution.  sendQuick is used by more 
than 1,500 businesses, including many Fortune Global 500 companies, in 40 countries 
and across industries such as banking, finance, insurance, manufacturing, retail, 
government, education, and healthcare. 
 

1.3 Purpose of Document 

This document provides an overview of how the sendQuick messaging system interfaces 
and works with clients’ application servers (AppServer).  
 
 
Six methods for sending and receiving SMSes using sendQuick are described, and 
examples are shown where relevant and applicable. The six methods are   
 

● Hypertext Transfer Protocol HTTP Post Method    
● eXtensible Markup Language XML Method 
● Simple Object Access Protocol SOAP Method 
● JavaScript Object Notation  JSON Method 
● Simple Mail Tranfer Protocol  SMTP(Email) Method 
● File Transfer Protocol   FTP Method 

 
Other topics of interest, such as use of free line tools, are also included. 

  



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 6    

2.0 sendQuick Solutions  

2.1  Business Uses of SMSes 

TalariaX offers a slew of sendQuick solutions to enable businesses to reach out to their 
customers by tapping into the widely used and cost-effective SMS mode of 
communication. Broadly categorised, sendQuick solutions help businesses: 

i. Broadcast messages such as that used by retailers to announce markdowns, 
offers and coupons; 

ii. Send alerts to target audience, for example alerts on potential malwares or system 
downtime; 

iii. Monitor system availability, for example alerting the IT department when any 
server is down; 

iv. Offer added layer of security and confidentiality of information such as that through 
2-Factor Authentication (2FA), and 

v. Automate business processes to improve responsiveness to customers, example 
confirmation of client appointments. 

  

2.2  AppServer and sendQuick Messaging Flow 

The general flow of how sendQuick supports messaging is shown in Figure 1.  
Essentially, to send SMSes: 

i. The sender of messages sends the intended outgoing data and instructions, using 
any of the six ascribed methods, from its AppServer to sendQuick. The recipient 
for this step can either be sendQuick box or sendQuick cloud, depending on the 
method subscribed by the sender; 

ii. sendQuick directs the outgoing messages to the relevant network carriers; 
iii. The network carriers route the messages to users’ mobiles. 

  
The flow for incoming messages works the same, only in reverse order. 

 
Figure 1: Overview of Transaction Flow 



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 7    

3.0 HTTP Post Method 

3.1 Overall Transaction Flow       

SMSes are essentially messages containing texts. This being the case, standard HTTP 
(POST/ GET) is sufficient for transferring data between sendQuick and AppServer. Figure 
2 shows how sendQuick connects to any application server, using HTTP/ CGI. 

 
Figure 2: Overall Transaction Flow 

 
Several points to note when using HTTP: 

i. Web service for the AppServer needs to be enabled, to accept HTTP (POST/GET) 
submitted from sendQuick; 

ii. The URL path submission of sendQuick requests to AppServer has to be 
configured, and this can be either a global or per keyword configuration; 

iii. For sending SMSes, AppServer needs to initiate a HTTP (POST/GET) to the HTTP 
API of the sendQuick system. 

  

  



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 8    

3.2 Sending SMSes  

The sendQuick HTTP API URL path is  
 

• http://<sendquickIPaddress>/cmd/system/api/sendsms.cgi  
 

Replace <sendquickIPaddress> with the IP address assigned to sendQuick 
device. 
E.g. http://192.168.1.101/cmd/system/api/sendsms.cgi 

 
Table 1 shows the input parameters for sending SMSes. 
 

Parameter 
Name 

Data 
Type 

Max 
Length 

Description Example of Values  

tar_num 
(Mandatory) 
 

String 220 This is the parameter for target 
or recipient mobile number. For 
international format, the '+'# 
character must be used. 
 
To send multiple numbers, use ',' 
to separate the numbers. 

The number has to be numeric and 
allow '+' special character. 
Use  %2B in URL in order for it to 
be URL-encoded to “+” 
 
Example:  
%2B6591234567 
For multiple numbers: 
%2B6591234561, %2B6591234562  

tar_msg 
(Mandatory) 
 
 
  

String sendQuick 
can support 
long 
messages. 
Refer to 
sendQuick 
configuration 

This parameter is the content or 
body of the message to be 
conveyed to the recipient.  
 
To ensure that recipients receive 
the entire message or text, this 
parameter must be encoded into 
the URL encoded string. Failure 
to do this may result in partial or 
corrupted messages delivered to 
recipients.  

Alphabets, numbers and special 
characters are allowed, and the 
message should be html-encoded.  
 
Message value should not be 
empty. 
  
Example 1:  
This is a test message for ASCII. 
 
Example 2:  

안녕하세요 수 있습니다for UTF8.   

    

tar_mode 
 

String Fixed This is the processing mode, 
and can be any of these: 

Value Type of 
messages 

text ASCII text 
SMS 

flashtext flash SMS for 
ASCII 
characters 

utf UTF8 
messages (for 
non- ASCII 
characters) 

 

This parameter defines how the 
message should be processed.  
 
For ASCII (English Text), the mode 
should be set as “text”.  
For UTF (Chinese, Japanese, 
Korean, etc), the mode should be 
set as “utf”.   
Flash SMS can support ASCII 
characters. Set the mode as 
“flashtext” for flash SMS.  
 
The parameter value is case-
sensitive. 



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 9    

Parameter 
Name 

Data 
Type 

Max 
Length 

Description Example of Values  

trackid* 
(optional) 
  

String 50 This is an optional field to track 
the identity of each individual 
request.  

Trackid value should be an integer. 
 
Example: 1001  

status_url* 
(optional) 
 
 
  

String 100 The message status URL that 
the system will respond to when 
the message has completed 
processing. This field is optional. 

The full URL (http://<ip>/<path>) 
needs to be included, in order to 
receive back the status of the post. 
  
Example: 
http://192.168.1.10/webroot/mymess
age-status.php    

label** 
(optional) 

String 12 This parameter is used to send 
messages via specific modems.  
To use this parameter, the label 
must be associated with a 
specific modem.   

The value can be alphanumeric. 
 
Example: marketingmodem 
   

priority 
(optional) 
 
 
  

String 1 This is an advisory parameter for 
setting the priority of the 
outgoing SMS. 
    

The value should be an integer 
between 1 to 9, with the highest 
priority being 1 and the lowest being 
9. Default value is '5'. 
  
Example: 1 

clientid 
(optional) 
  

String 20 This is an optional field, and is 
triggered if there are more than 
one application running on the 
same server.  

The value can be alphanumeric.  
 
Example: client123 
    

username 
(optional) 

String 20 Required for authentication with 
username/password 

The value can be alphanumeric. 
Example: username123 

password 
(optional) 

String 20 Required for authentication with 
username/password 

The value can be alphanumeric. 
Example: password123 

token 
(optional) 

String  20 Required for authentication with 
token 

The value can be alphanumeric. 
Example: token123 

 Table 1: Input Parameters for sendQuick API     

 

* The usage of trackid and status_url is discussed more in Section 9.2  
** Refer to Section 9.3 for discussion on label. 
# Standard HTTP (POST/GET) will treat '+' as a blank space. 

       
1. Example for Single Mobile 
http://192.168.1.101/cmd/system/api/sendsms.cgi?tar_num=%2B6591234567&tar_msg
=test&tar_mode=text 
 
2. Example for Multiple Mobile 
http://192.168.1.101/cmd/system/api/sendsms.cgi?tar_num=%2B6591234561,%2B659
1234562,%2B6591234563&tar_msg=test&tar_mode=text 
 
Note : for tar_num, remember to use %2B to represent the “+” character 
  



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 10    

3.2.1 sendQuick Response to sendsms.cgi        

The parameters in Table 2 show the response from sendQuick on the processing status 
and indicate whether messages have been queued for delivery.  

Type Response   

For single tar_num 
   

OK 
Queue: <sendQuick-message-ID> 

For multiple tar_numn 

   
OK 
Queue: 
<sendQuick-message-ID1>-<tar_num1> 
<sendQuick-message-ID2>-<tar_num2>   
... 
<sendQuick-message-ID>-<tar_numn> 

Table 2: HTTP sendsms.cgi Response 

3.2.2 Check Status of Outgoing SMSes     

To check the status of outgoing SMSes, use the API URL path 
http://<sendquickIPaddress>/cmd/system/api/msgstatus.cgi  
 
The input parameters are shown in the table below. 

Paramete
r Name 

Data 
Type 

Max 
Length 

Description Example of Values  

mode string fixed “queue” only The value should be alphanumeric which is 
as predefined. 
Example: queue  

msgid string 50 The <sendQuick-message-ID> 
returned from sendsms.cgi  

The message id returned from the 
API. 
Example: M12345  

Table 3: Parameters for Status of Outgoing SMSes 

 
Example Checking Status of Outgoing SMSes 
1. Example HTTP Request 
http://192.168.1.101/cmd/system/api/msgstatus.cgi?mode=queue&msgid=M12345 
  
2. The format of the response will be as follows 
<start-process-dtm><tab><completed-process-dtm><tab><status><tab><modem-
imei><tab><smsc><tab><tar_num><tab><tar_msg> 
 
3. Example of  HTTP Response 
31-10-020 10:57:56 31-10-020 18:33:45 Y 359126030021471 +6596845999 
+6591234567     test message 
 
The URL response when no associating <sendQuick-message-ID> is found  

 No result found: <sendQuick-message-ID>  
Note: This is the case where the <sendQuick-message-ID> is invalid or the message has 
been deleted from the system. 
  



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 11    

3.2.3 Getting the Status of SMSes Sent 

This is for sendQuick server to call back the client's status_url to update the message 
status after SMSes have been sent out. The status_url should accept the input 
parameters shown in the table below. 
 

Paramete
r Name 

Data 
Type 

Max 
Length 

Description 

trackid 
 

string 50 This is the trackid submitted by the AppServer for sendQuick to track the 
status of outgoing SMSes.  

status string 1 This is the status of outgoing SMSes, represented as follows: 
Y – successfully sent 
F – failed to send 
D – Message deleted from server 
R – Received delivery report from recipient mobile phone.  

totalsms integer 2 This will be the integer value of the total SMSes used for sending the 
complete message. 
NOTE: Not applicable for status D or R  

mno string 20 The mobile number of the recipient.  

Table 4: Parameters for Getting Status of SMSes Sent Out 

 
Example : Getting Status of SMSes Sent Out Using HTTP 
 
Step 1:  
http://192.168.1.101/cmd/system/api/sendsms.cgi?tar_num=%2B6591234567&tar_msg
=testmessage&tar_mode=text&trackid=1001&status_url=http://yourclientserverip/apipat
h/api.cgi 
  
Step 2:  
SMS is processed in sendQuick server accordingly and sendQuick responses to the 
status_url with “Successful” or “Failed” depending on the status of delivery 
  
Step 3: 
http://<yourclientserverip>/apipath/api.cgi?trackid=1001&status=Y&totalsms=1&mno=%
2B6591234567 
 



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 12    

3.2.4  Delete Outgoing SMSes via HTTP 

To delete outgoing messages, input API URL path 

• http://<sendquickIPaddress>/cmd/system/api/reqdelete.cgi  
 
Replace <sendquickIPaddress> with the IP address assigned to sendQuick 
device. 
E.g. http://192.168.1.101/cmd/system/api/reqdelete.cgi 
 

The input parameters are shown in table below. 
 

Paramete
r 

Data 
Type 

Max 
Length 

Description 

trackid 
 

string 50 This is the trackid submitted by the AppServer for sendQuick to track the 
status of outgoing SMSes.  

tar_num string 20 The mobile number associated with the trackid.  

Table 5: Parameters for Deleting Outgoing SMSes 

 
Note: If tar_num is excluded in the parameters, all the message that is associated with 
the trackid will be deleted from the system. 
 
Example : Deleting Outgoing SMSes Using HTTP 
http://192.168.1.101/cmd/system/api/reqdelete.cgi?tar_num=%2B6591234567&trackid=
1001 
 
 

  



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 13    

3.3 Receiving SMSes  

This section is for incoming SMSes. Incoming SMSes will be posted to the Client API 
registered with sendQuick.  
 
Table 6 shows the input parameters for receiving SMSes. 
 

Paramete
r Name 

Data 
Type 

Max 
Length 

Description 

mno string 20 The mobile number of the sender. 

txt string user 
defined 

The content of the sms message. 

dtm string 19 The date and time when the message was received. + is space between 
date and time 

charset string fixed The character set of the content. 
“text” for ASCII message 
“utf” for unicode UTF-8 message 

Table 6: Parameters for Receiving SMSes 

 
Example : Receiving SMSes using HTTP 
 
http://192.168.1.101/clientapi_path/clientapi.cgi?mno=%2B6591234567&txt=testmessa
ge&dtm=05/07/2020+17:57:01&charset=text 



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 14    

4.0 XML Method 

4.1 Sending Messages 

The parameters for sending SMSes are the same as that for the HTTP method, shown in 
Table 1. The URL for the API is  
 

• http://<sendQuickIPAddress>/api/sendsms_xml.php 
 
Example : Sending SMSes to a Single Mobile Using XML 
 

<?xml version="1.0"?> 

<info> 

<tar_num>+6512345678<tar_num> 

<tar_msg>Test Message</tar_msg> 

<tar_mode>text</tar_mode> 

<label>marketingmodem</label> 

<priority>3</priority> 

</info>  

 
Example : Sending SMSes to Multiple Mobiles Using XML 
 
<?xml version="1.0"?> 

<info> 

<tar_num>+6512345671,+6512345672,+6512345673<tar_num> 

<tar_msg>Test Message</tar_msg> 

<tar_mode>text</tar_mode> 

<label>marketingmodem</label> 

<priority>3</priority> 

</info>  

4.2 Responses to sendsms_xml.php 

The parameters in the table below show the response from sendQuick on the processing 
status and indicate whether messages have been queued for delivery. 
 

Type Response   

For single tar_num <mobilenum>:<message-id> 

For multiple tar_numn 

   
<mobilenum1>-<message-id1> 
<mobilenum2>-<message-id2> 
... 
<mobilenumn>:-<message-idn> 

Table 8: XML Response Parameters 

  



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 15    

4.3 Receiving SMSes 

The parameters for receiving SMSes are the same as that for the HTTP method, which 
is shown in Table 6.  
  
Example : Receiving SMSes Using XML Method 
 
http://192.168.1.101/clientapi_path/clientapi.cgi  

<?xml version="1.0"?> 

<mno>+6512345678</mno> 

<txt>test message received</txt> 

<dtm>05/07/2020 17:57:01</dtm> 

<charset>text</charset> 

 
 
 

  



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 16    

5.0 SOAP Method 

5.1 Sending SMSes 

The API URL for sending SMSes is  
 

• http://<sendQuickIPAddress>/api/sendsms_soap.php  
 
Examples of sending messages using SOAP are shown next, based on the same 
parameters shown in Table 1.  
 
Example : Sending SMSes to a Single Mobile Using SOAP 
 

<?xml version="1.0" encoding="ISO-8859-1"?> 

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:tns="urn:apiwsdl" 

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:SOAP-

ENC="http://schemas.xmlsoap.org/soap/encoding/"> 

<SOAP-ENV:Body> 

<mns:processAPI xmlns:mns="urn:apiwsdl" SOAP-

ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> 

<tar_num xsi:type="xsd:string">+6591234567</tar_num> 

<tar_msg xsi:type="xsd:string">test soap</tar_msg> 

<tar_mode xsi:type="xsd:string">text</tar_mode> 

</mns:processAPI> 

</SOAP-ENV:Body> 

</SOAP-ENV:Envelope> 

 
Example : Sending SMSes to Multiple Mobiles Using SOAP 
 
<?xml version="1.0" encoding="ISO-8859-1"?> 

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:tns="urn:apiwsdl" 

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:SOAP-

ENC="http://schemas.xmlsoap.org/soap/encoding/"> 

<SOAP-ENV:Body> 

<mns:processAPI xmlns:mns="urn:apiwsdl" SOAP-

ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> 

<tar_num xsi:type="xsd:string">+6591234561,+6591234562,+6591234563</tar_num> 

<tar_msg xsi:type="xsd:string">test soap</tar_msg> 

<tar_mode xsi:type="xsd:string">text</tar_mode> 

</mns:processAPI> 

</SOAP-ENV:Body> 

</SOAP-ENV:Envelope> 

  



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 17    

5.2 sendQuick Responses to sendsms_soap.php 

The table below shows the response from sendQuick on the processing status and 
indicates whether messages have been queued for delivery. 
 

Type Response   

For single tar_num 
   

<?xml version="1.0" encoding="ISO-8859-1"?><SOAP-

ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xmlns:SOAP-

ENC="http://schemas.xmlsoap.org/soap/encoding/"><SOAP-

ENV:Body><ns1:processAPIResponse 

xmlns:ns1="http://tempuri.org"><return 

xsi:type="xsd:string">+6591234567:10</return></ns1:pro

cessAPIResponse></SOAP-ENV:Body></SOAP-ENV:Envelope> 

For multiple tar_numn 

   

<?xml version="1.0" encoding="ISO-8859-1"?><SOAP-

ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xmlns:SOAP-

ENC="http://schemas.xmlsoap.org/soap/encoding/"><SOAP-

ENV:Body><ns1:processAPIResponse 

xmlns:ns1="http://tempuri.org"><return 

xsi:type="xsd:string">+6591234561:10 
+6591234562:11 
+6591234563:12</return></ns1:processAPIResponse></SOAP

-ENV:Body></SOAP-ENV:Envelope> 

Table 9: SOAP Response Parameters 

  



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 18    

5.3 Receiving SMSes 

The parameters for receiving SMSes are the same as that for the HTTP method, which 
is shown in Table 6.  
  
Example : Receiving SMSes Using SOAP 
 
POST /clientapi_path/clientapi.cgi HTTP/1.0 

Host: 127.0.0.1 

User-Agent: NuSOAP/0.7.3 (1.114) 

Content-Type: text/xml; charset=utf-8 

SOAPAction: "" 

Content-Length: 653 

  

<?xml version="1.0" encoding="ISO-8859-1"?><SOAP-ENV:Envelope SOAP-

ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:SOAP-

ENC="http://schemas.xmlsoap.org/soap/encoding/"><SOAP-

ENV:Body><ns5130:processAPI xmlns:ns5130="http://tempuri.org"><mno 

xsi:type="xsd:string">+6591234567</mno><txt xsi:type="xsd:string">test 

soap</txt><charset xsi:type="xsd:string">text</charset><dtm 

xsi:type="xsd:string">05/07/2020 17:57:01</dtm></ns5130:processAPI></SOAP-

ENV:Body></SOAP-ENV:Envelope> 

 
  



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 19    

6.0 JSON Method 

6.1 Sending SMSes 

The URL for sending SMSes using JSON is 
 

• http://<sendQuickIPAddress>/api/sendsms_json.php 
 
Examples of sending messages using JSON are shown next, based on the same 
parameters shown in Table 1. 
  
Example : Sending SMSes to a Single Mobile Using JSON 
 

{ 

  "tar_num": "+6591234567" 

  "tar_msg": "test json", 

  "tar_mode": "text",   

 } 

 
Example : Sending SMSes to Multiple Mobiles Using JSON 
 

{ 

  "tar_num": "+6591234561,+6591234562,+6591234563" 

  "tar_msg": "test json", 

  "tar_mode": "text",    

 } 

 

6.2 sendQuick Response to sendsms_json.php 

 
The table below shows the response from sendQuick on the processing status and 
indicates whether messages have been queued for delivery. 
 

Type Response   

For single tar_num 
   

<mobilenum>:<message-id> 

For multiple tar_numn 

   
<mobilenum1>-<message-id1> 
<mobilenum2>-<message-id2>   
... 
<mobilenumn>:-<message-idn> 

Table 10: JSON Response Parameters 

  



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 20    

6.3 Receiving SMSes 

The parameters for receiving SMSes are the same as that for the HTTP method, which 
is shown in Table 6.  
 
Example : Receiving SMSes Using JSON Method 
 
http://192.168.1.101/clientapi_path/clientapi.cgi 

 { 

  "Entry": { 

   "mno": "+6591234567" 

   "txt": "test", 

   "dtm": "05/07/2020 17:57:01", 

   "charset": "text",   

   }   

 } 

 

  



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 21    

7.0 SMTP (Email) Method 

7.1 Sending SMS 

The syntax to use for the message when sending e-mail is  
 

• <tar_num>@<serverIP/domainname> 
 
where <tar_num> is the number to send the message to and <serverIP/domainname> being 
the IP address or domain name of the server. 
 
For example: 
If you set the IP address 192.168.1.101 and the number to send the SMS is 91234567, then 
the e-mail for sending messages is 91234567@192.168.1.101 
  
Example 
 
To                 :        91234567@192.168.1.101 
Subject         :        Test message 
Message       :        Test message for you 
  
There is no difference for sending SMS messages via email in different languages.  The 
system will be able to recognise from the email header. 
  

7.2 Receiving SMS  

Incoming SMS messages are routed from sendQuick to clients’ email based on emails 
specified by clients.   
 
Example 
  
Sender: +6597654321 
Timestamp: 01/07/20 17:13:22 
IMEI: 359123456701234 
SMSC: +6591234567 
Message: Test message for you 
 

  



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 22    

8.0 FTP Method 

8.1 Activation 

For this method, the FTP service in sendQuick needs to be activated first.   
 
To do this, login to the sendQuick web interface as a Server Administrator. 
 
Navigate to Messaging Setup > SMS Messaging Setup   
Ensure that the SFTP/FTP to SMS Service is “Enabled” 
 

 
Figure 3.1: Changing FTP Account and Password 

 
Next, configure the FTP account and Password as follows: 

● On the sendQuick web interface, navigate to Password Management > FTP Login 
Account 

● Enter your new password  and click “Save” (see below) 
 

 
Figure 3.2: Changing FTP Account and Password 



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 23    

8.2 Folder, File & Format 

8.2.1 Folder 

The FTP folder name in the server is “/smsftp/”   
This is the directory where the file with login 'smsapp' username will be stored. 

8.2.2 File Structure 

The structure of files sent using FTP are as indicated in the table below 
 

Field Size Remarks 

Hand Phonex(15) Numeric only 

Messagex(160)  

Table 7: FTP File Structure 

8.2.3 File Format 

The format for data within the message file must follow that shown in the example below 
using comma-delimited (i.e. use comma) to separate values, and double-quoted to 
encapsulate one piece of data. When the data file is created using Excel spreadsheet, the 
double-quotes are automatically created. 
  
Example : FTP File Format 
  
Format: 
  
handphone,message  
handphone1,message1 
  
Example: 
  
“96367680”,”How are you?”  
“96180556”,”I am fine”  
  
To check the formatting of any data prior to sending the file, open the target file for viewing 
in any text editor, for example Notepad or TextEdit. 
 

8.2.4 File Type 

Files allowed are text files with extension “.msg”. There are two text files that need to be 
uploaded when using the FTP method – one being the file containing the message (the 
*.msg file) and the other being the file to signify completion of upload (the *.end file). The 
message file must be in csv format and .end is a blank file. 
 



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 24    

8.2.5 Upload the Files 

Upload the .msg file containing the message into the sendQuick folder :  
 /home/smsapp/smsftp 
 
Thereafter, upload the .end file into the same folder, to inform the system that the message 
file upload has been complete



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 25    

9.0 Useful Topics 

In this section, other useful topics such as preparation of AppServer to communicate with 
sendQuick and free tools of interest, are covered. Examples showing codes and 
parameter commands are given where practicable. 

9.1 Examples of Applications  

A few sample scripts are shown to illustrate how the AppServer has to be prepared to 
accept input from the sendQuick system. The programming languages used in these 
examples are PHP or Perl, but the underlying concept is similar for all HTTP scripting or 
programming platforms. 

9.1.1 Sending of SMSes  

The following sample code shows a simple HTTP submission in Perl. 
  
Example : Sample Code for Simple HTTP CGI submitted with Perl 
#!/usr/bin/perl -w 

use LWP::UserAgent; 

use URI::Escape; 

  

# Create the simple HTTP agent.  

$ua = LWP::UserAgent->new;  

$ua->agent("MyTestApp/0.1 "); 

  

# Composing the parameters and content. 

my $tar_msg = "testing 1 2 3 -- From TalariaX (Singapore)"; 

my $mno = '91234567'; 

my $req = HTTP::Request->new(POST => 

'http://192.168.1.101/cmd/system/api/sendsms.cgi'); 

$req->content_type('application/x-www-form-urlencoded');  

$req->content('tar_num=' . uri_escape($mno) . 

   '&tar_mode=text' . 

'&tar_msg=' . uri_escape($tar_msg); 

  

# Pass request to the user agent and get a response back  

my $res = $ua->request($req); 

  

# Check the outcome of the response 

if ($res->is_success) { 

print “Submit successful: “, $res->content, "\n"; 

} else { 

print “Submit failure: “, $res->status_line, "\n"; 

} 

  
NOTE:  

● The assumed IP address of sendQuick is 192.168.1.101 
● This script uses the LWP module of Perl. Please download the LWP module from 

http://search.cpan.org in order to test the script. 
  



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 26    

9.1.2 Global Script for Receiving SMS 

To configure the global receiving script, specify the URL path to the sendQuick server, by 
configuring the Messaging Setup. 
  
On the sendQuick web interface, navigate to Messaging Setup > SMS Response 
Action. 
As shown in the example below, assuming the AppServer IP is 192.168.1.22 and path is 
/sms/receivesms.php, fill in the field as follows: 
 

Figure 4: Configuration of Global Receiving Script 

 
Example : Sample Code for Receiving SMSes Using PHP 
 
<?php 

/* Even though there are total 4 input parameters, 

charset and dtm is not applicable for this example, 

so we ignore them completely. */ 

$mno = $_REQUEST['mno']; 

$msg = $_REQUEST['txt']; 

  

if( !isset($mno) || !isset($msg) ){ 

echo “Invalid input - Missing data”; 

  

exit; 

} 

  

if( strlen($mno) == 0 || strlen($msg) == 0 ){ 

echo “Invalid input - Blank data.”; 

exit; 

} 

  

try { 

/* now we had captured the data, we store it into our database table. 

We use sendQuickLite (standard module in PHP 5.1.x and above) to store the 

message. To create this table, just download sendQuicklite3 from 

http://www.sendQuicklite.org/ use the command line utility to create this 

database (messagedb.sendQuicklite) and table: incoming_sms: 

  

CREATE TABLE `incoming_sms` (`idx` INTEGER PRIMARY KEY , `mno` VARCHAR, `txt` 

VARCHAR) 

  

NOTE: Highly recommend to use Firefox plugin to manage sendQuickLite 

database: 

http://sendQuicklitemanager.mozdev.org/ 

*/ 



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 27    

  

// NOTE: Path to the messagedb.sendQuicklite required to full path.  

$dbh = new PDO('sendQuicklite://<path>/<to>/messagedb.sendQuicklite'); 

  

$stmt = $dbh->prepare("INSERT INTO incoming_sms (mno,txt) VALUES 

(:mno, :txt)"); 

$stmt->bindParam(':mno',$mno); 

$stmt->bindParam(':txt',$msg); 

$stmt->execute(); 

  

} catch ( Exception $e ) { 

$msg = $e->getMessage(); 

echo “DB ERROR: ", $msg; 

exit; 

} 

?> 

  

<html> 

<body> 

Message Received. Thank You. 

</body> 

 

9.1.3 Route by Specific SMS Keyword       

SMS Keyword here refers to the first word of the received SMS message. To enable this 
option, login to the sendQuick Messaging Portal for Users.   
 
Navigate to Keyword Management > Add SMS Keyword 
  
Figure 5 shows an example of how the keyword “sms” is created. Once this keyword is 
created, users can trigger this keyword by entering an SMS message starting with the 
word 'sms', such as 'sms hello world'.  
 
Note that for HTTP processing, the other input fields of the keyword creation are not 
required. The process using keywords is the same as that for global receiving script, with 
the parameters shown in Table 6 applying here. 
 

 
Figure 5: Create SMS Keyword 



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 28    

9.1.4 Script to Generate SMS Response to Sender   

The objective of this example is to show how a script can generate an SMS reply to the 
sender upon receiving the SMS message, using send SMS API  
 
Sample Code : Generating SMS Reply to Sender in PHP 
 
<?php 

 /* Even though there are total 4 input parameters, 

 charset and dtm is not applicable for this example, 

 so we ignore them completely. */ 

 $mno = $_REQUEST['mno']; 

 $msg = $_REQUEST['txt']; 

 

 if( !isset($mno) || !isset($msg) ){ 

  echo “Invalid input - Missing data”; 

  exit; 

 } 

 

 if( strlen($mno) == 0 || strlen($msg) == 0 ){ 

  echo “Invalid input - Blank data.”; 

  exit; 

 } 

 

 try { 

 /* now we had captured the data, we store it into our database table. 

 We use sendQuickLite (standard module in PHP 5.1.x and above) to store 

the message. 

 To create this table, just download sendQuicklite3 from 

http://www.sendQuicklite.org/ 

 use the command line utility to create this database 

(messagedb.sendQuicklite) 

 and table: incoming_sms: 

 

 CREATE TABLE `incoming_sms` (`idx` INTEGER PRIMARY KEY , `mno` VARCHAR, 

`txt` VARCHAR) 

 

 NOTE: Highly recommend to use Firefox plugin to manage sendQuickLite 

database: 

 http://sendQuicklitemanager.mozdev.org/  

 */ 

 

 // NOTE: Path to the messagedb.sendQuicklite required to full path. 

 $dbh = new PDO('sendQuicklite://<path>/<to>/messagedb.sendQuicklite'); 

 
 $stmt = $dbh->prepare("INSERT INTO incoming_sms (mno,txt) VALUES 

(:mno, :txt)"); 

 $stmt->bindParam(':mno',$mno); 

 $stmt->bindParam(':txt',$msg); 

 $stmt->execute(); 

 

 } catch ( Exception $e ) { 

  $msg = $e->getMessage(); 

     echo “DB ERROR: ", $msg; 

  exit; 

 } 

 
 // Now we generate a response to the sender. 



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 29    

 $url = “http://192.168.1.22/cmd/system/api/sendsms.cgi”; 

 $tar_mno = $mno; 

 $tar_msg = “You said: $msg\nI said: Thank you.”; 

 

 // URL encoding should always be utilised for proper data passing. 

 $param = “tar_num=” . urlencode($tar_mno) . 

  “&tar_msg=” . urlencode($tar_msg) . 

  “&tar_mode=text”; 

 
 /* We use curl library for HTTP submit, this may require additional 

setup in PHP 

 in order to be usable. 

 

 Refer http://www.php.net for the documentation on how this can be 

enable. */ 

 

 $ch = curl_init(); 

 curl_setopt($ch, CURLOPT_URL, $url); 

 curl_setopt($ch, CURLOPT_POST, 1); 

 curl_setopt($ch, CURLOPT_POSTFIELDS, $param); 

 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1); 

 $urlresp = curl_exec($ch); 

?> 

 

<html> 

<body> 

Message Received. Thank You. 

Your response: <?php echo urlresp;?> 

</body> 

 

  



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 30    

9.2 Advance Topic for trackid and status_url 

Where AppServer requires sendQuick to return the status of the messages it submitted, 
AppServer will need to submit the trackid and status _url parameters to sendQuick.  
 
With inclusion of these parameters, sendQuick returns the results of messages processed 
to the URL specified by the status_url parameter. This process flow is shown in the figure 
below 
 

 
Figure 6: Sending SMS flow with status_url 

        
The next two examples illustrate the sending of SMSes with status tracking: Example 1 
is a perl script for making the HTTP submit, and Example 2 is a php script which reads 
the input of the message and generates an email to inform the user of message status. 
 
 
Example 1 : Sending SMS  with Status Tracking using HTTP (perl script) 
 
#!/usr/bin/perl -w 

 

use LWP::UserAgent; 

use URI::Escape; 

 

# Create the simple HTTP agent. 

$ua = LWP::UserAgent->new; 

$ua->agent("MyTestApp/0.1 "); 

 

# Composing the parameters and content. 

my $tar_msg = "testing 1 2 3 -- From TalariaX (Singapore)"; 

my $mno = '91234567'; 

my $req = HTTP::Request->new(POST => 

'http://192.168.1.101/cmd/system/api/sendsms.cgi'); 

$req->content_type('application/x-www-form-urlencoded'); 

 

# Now we add 2 additional parameters: trackid and status_url. 

# Here we assume the AppServer is with IP: 192.168.1.22 

$req->content('tar_num=' . uri_escape($mno) . 

 '&trackid=0001' . 

 '&status_url=' . uri_escape("http://192.168.1.22/sms/status.php") . 

 '&tar_mode=text' . 

 '&tar_msg=' . uri_escape($tar_msg)); 

 

# Pass request to the user agent and get a response back 

my $res = $ua->request($req); 

 

# Check the outcome of the response 

if ($res->is_success) { 



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 31    

 print "Submit successful: " , $res->content, "\n"; 

} else { 

 print "Submit failure: " , $res->status_line, "\n"; 

} 

 
Example 2 : Example of Status URL in PHP 
 
<?php 

 /* The status_url will be provided with the following input parameters: 

 - mno : the mobile number that was processed. 

 - trackid : The trackid that given initially 

 - totalsms : The total number of SMS sent for submission of sending the 

message. 

 - status : The status of this message. Y – successfully sent; F – 

failure to send. 

 - smsc : The SMSC of SIM card used for sending SMS. 

 - imei : The IMEI number of the modem used for sending SMS. 

 */ 

 $mno = $_REQUEST['mno']; 

 $trackid = $_REQUEST['trackid']; 

 $totalsms = $_REQUEST['totalsms']; 

 $stat = $_REQUEST['status']; 

 $smsc = $_REQUEST['smsc']; 

 $imei = $_REQUEST['imei']; 

 

// After we read the status, we generate an email to 

// inform someone about the status of this message 

 

$mailmsg = "The message for $mno for trackid: $trackid " . 

"with total SMS: $totalsms was returned with status: $stat"; 

 

// We use the standard mail() of PHP. 

$to = 'seiheng@talariax.com'; 

$subject = 'SMS Notice for ' . $trackid; 

$message = $mailmsg; 

$headers = 'From: sms-php-example@talariax.com' . "\r\n" . 

'X-Mailer: PHP/' . phpversion(); 

 

mail($to, $subject, $message, $headers); 

?> 

 

 

<html> 

<body> 

<?php echo $mailmsg; ?> 

</body> 

</html> 

        



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 32    

9.3 Using Parameter 'label' 

To use the ‘label’ parameter, a string must be associated with a modem. Refer to figure 
below for the association screen. This string cannot contain the space character. On the 
sendQuick admin web interface, navigate to Modem Setup > Modem Routing 

 
Figure 7: Modem Routing 

 
Click on “Add New Record” and fill in the Modem IMEI and the label to be used to identify 
this modem. 

 
          
  Figure 8: Add Label To Modem 

 
Some points to note: 

● Mode  IMEI is the unique string set for each modem. This can be found under the 
modem status page. 
   

● Modem Label can be any string (without space character), and can be a same 
string of another modem. If there are 2 modems set with a same string, the 
system would choose the modem that is more idle. 

 
● A modem can be associated with more than 1 label. Each label need to be 

separated by a "," character.



sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 33    

9.4 Useful Free Utilities 

Several free utilities for sending SMSes are discussed in this section. 
 

9.4.1 curl 

curl is a command line tool for transferring files with URL syntax, and supports FTP, 
FTPS, HTTP, HTTPS, SCP, SFTP, TFTP, TELNET, DICT, LDAP, LDAPS and FILE.  This 
tool is available for Linux and Windows platforms, and is very useful for applications 
capable of executing commands to link to other applications.  
 
 
Example : Sending SMSes using curl 
 
$> curl -- data-urlencode "tar_num=91234567" --data-urlencode "tar_msg=this is a test 
SMS & it is using curl for sending" http://<sendQuickIP>/cmd/system/api/sendsms.cgi 
  
NOTE: --data-urlencode is only available for version 7.18.0 and above. For earlier 
versions, the content needs to be URL encoded before submission to curl for execution.  
Visit https://curl.haxx.se/ to get more information and also to download curl. 
 

9.4.2 Java Command Tool 

This Java example command tool is written by TalariaX. It is a simple utility for sending 
SMS via HTTP POST to sendQuick device. 
 
Example: 
 
$> java httppost “91234567” “this is a test” 
http://<sendQuickIP>/cmd/system/api/sendsms.cgi 
 
 
Sample Code : Java command tool for sending SMS. 
 
Filename: httppost.java 
 
import java.lang.*; 

import java.net.*; 

import java.io.*; 

 

public class httppost { 

 

 private static String sendsms_url = "http://<sendQuick 

IP>/cmd/system/api/sendsms.cgi"; 

 

 public static void main(String[] args){ 

 
  /* 

   * java httppost <mobile number> <SMS message> <sendQuick URL> 

   * eg: 

   * java httppost "+6591234567" "This is a test SMS" <sendQuick 

URL> 

https://curl.haxx.se/


sendQuick Appliance API Guide 3.1 

Copyright©2020, TalariaX Pte Ltd                                                                                                                                     
Page 34    

   */ 

  String mno = args[0]; 

  String msg = args[1]; 

  String url = args[2]; 

 
  sendsms_url = url; 

 

  HttpSubmit(mno, msg); 

 } 

 

 public static void HttpSubmit(String mno, String msg) 

 { 

  URL url; 

  URLConnection urlConn; 

  DataOutputStream printout; 

  BufferedReader input; 

 

  try { 

    // URL of CGI-Bin script. 

   url = new URL (sendsms_url); 

   // URL connection channel. 

   urlConn = url.openConnection(); 

   // Let the run-time system (RTS) know that we want input. 

   urlConn.setDoInput (true); 

   // Let the RTS know that we want to do output. 

   urlConn.setDoOutput (true); 

 

   // No caching, we want the real thing. 

   urlConn.setUseCaches (false); 

 

   // Specify the content type. 

   urlConn.setRequestProperty("Content-Type", 

    "application/x-www-form-urlencoded"); 

 

   // Send POST output. 

   printout = new DataOutputStream (urlConn.getOutputStream 

()); 

   String content ="tar_num=" + URLEncoder.encode (mno, "UTF-

8") + 

    "&tar_msg=" + URLEncoder.encode(msg, "UTF-8"); 

   printout.writeBytes (content); 

   printout.flush (); 

   printout.close (); 

 

   // Get response data. 

   input = new BufferedReader(new 

InputStreamReader(urlConn.getInputStream())); 

   String str; 

   while (null != ((str = input.readLine()))) { 

   System.out.println (str); 

   } 

   input.close (); 

  } catch ( Exception e ){ 

   e.printStackTrace(); 

  } 

 } 

} 


	1.0 Introduction
	1.1 About TalariaX Pte Ltd
	1.2 About sendQuick
	1.3 Purpose of Document

	2.0 sendQuick Solutions
	2.1  Business Uses of SMSes
	2.2  AppServer and sendQuick Messaging Flow

	3.0 HTTP Post Method
	3.1 Overall Transaction Flow
	3.2 Sending SMSes
	3.2.1 sendQuick Response to sendsms.cgi
	3.2.2 Check Status of Outgoing SMSes
	3.2.3 Getting the Status of SMSes Sent
	3.2.4  Delete Outgoing SMSes via HTTP

	3.3 Receiving SMSes

	4.0 XML Method
	4.1 Sending Messages
	4.2 Responses to sendsms_xml.php
	4.3 Receiving SMSes

	5.0 SOAP Method
	5.1 Sending SMSes
	5.2 sendQuick Responses to sendsms_soap.php
	5.3 Receiving SMSes

	6.0 JSON Method
	6.1 Sending SMSes
	6.2 sendQuick Response to sendsms_json.php
	6.3 Receiving SMSes

	7.0 SMTP (Email) Method
	7.1 Sending SMS
	7.2 Receiving SMS

	8.0 FTP Method
	8.1 Activation
	8.2 Folder, File & Format
	8.2.1 Folder
	8.2.2 File Structure
	8.2.3 File Format
	8.2.4 File Type
	8.2.5 Upload the Files


	9.0 Useful Topics
	9.1 Examples of Applications
	9.1.1 Sending of SMSes
	9.1.2 Global Script for Receiving SMS
	9.1.3 Route by Specific SMS Keyword
	9.1.4 Script to Generate SMS Response to Sender

	9.2 Advance Topic for trackid and status_url
	9.3 Using Parameter 'label'
	9.4 Useful Free Utilities
	9.4.1 curl
	9.4.2 Java Command Tool



